Active Safety and Cooperative Systems in the Road Infrastructure of the Future

Centre for Research and Technology Hellas, Hellenic Institute of Transport
Dr. Evangelos Bekiaris
Web: www.hit.certh.gr
Traffic Safety: Putting the legos in place

- Traffic safety risk emanates from the cooperation of three main factors: driver-vehicle-traffic environment.
- Measures in order to support/improve any of these factors, may have negative side-effects to the others.
- According to the risk homeostasis theory (Wilde 2001), the enhancement of safety level of a vehicle leads sometimes drivers to change their driving profile, undertaking more risky maneuvers, in order to keep their conceived level of risk constant.
- Thus, optimal measures to improve to all three contributors or build upon the strengths and interactions between each combined environment.
- Alternatives for the safety hazards, can be based upon Autonomous (e.g. only Infrastructure or in-vehicle based) or Co-operative solutions (e.g. V2V, I2V, or/and In-Vehicle ones).
The two pillars of Road Safety and Infrastructure:

I. Forgiving Roads

A forgiving road is defined as a road that is designed and built in such a way as to interfere with or block the development of driving errors and to avoid or mitigate negative consequences of driving errors, allowing the driver to regain control and either stop or return to the travel lane without injury or damage.
II. Self-explanatory Roads

Self-explanatory road is defined as one that is designed and constructed to evoke correct expectations from road users and elicit proper driving behaviour, thereby reducing the probability of driver errors and enhancing driving comfort.

High-Speed Through Roads (Pictures courtesy of CROW, BASt)
We are living in a cooperative world...
This is true when we are on the road too...

Communication between Vehicle-Vulnerable road users with DSRC

VRU Detection systems
Cooperative Systems (indicative)

- Speed adaptation (V2I and I2V communication)
- Reversible lanes due to traffic flow (V2I and I2V)
- Local danger / hazard warning (V2V)
- Post crash warning (V2V)
- Cooperative intersection collision warning (V2V and V2I)
Cooperative Systems - Potential Impacts

- According to CODIA Final Report, Cooperative systems showed high potential to contribute to improved traffic safety (Kulmala, 2008).
- Dynamic speed adaptation showed most potential (-7%) to decrease fatalities.
- The cooperative intersection collision warning and local danger warning comes next (-4%).
- The potential of injury prevention is higher for cooperative inter-section collision (-7%) followed by dynamic speed adaptation (-5%).
- The reversible lane system decreases the fatalities and injuries on the sections equipped. However, a very small part of the motorway and urban network are suitable for the system.
- The SAFESPOT impact analysis study showed considerable safety effects resulting in 7.1 % less fatalities for the V2V case, and 8.9 % for the V2I case, assuming a 100 % penetration rate of cooperative systems into the vehicle fleet (Schindhelm, 2010).
Some ideas...

1. **Virtual Rumble Strip**

 • Vehicle lateral and rear monitoring system (LRM)

 • Lane Departure Warning / Lane keeping Systems (LDWS)

 • Collision Avoidance Systems (CAS), for the lateral area, including lane change support systems.
2. **VSL Application**

- **before**
- **after**

Measured Accident cost reduction due to VSL application (Gunnar Lind, “Cost-Benefit Analysis of ITS”, Movea Trafikkonsult AB, April 2009.)
3. VMS Application

Benefits from route change

Time benefits due to early warning on road closure or accident ahead through VMS (Gunnar Lind, “Cost-Benefit Analysis of ITS”, Movea Trafikkonsult AB, April 2009.)
In vehicle personalized priority information...
4. Smart Strip Concept

Smart Strip miniaturised multi-sensorial platform at a highway or rural environment.

Smart Strip miniaturised multisensorial platform at an intersection/merging application.
Smart Strip Type-applications:

- **Magnetic sensors for traffic management**
 Magnetic sensors dedicated to various applications that provide relevant information such as:
 - Basic vehicle detection
 - Raw classification of vehicle
 - Local speed estimation; acceleration; lateral position in lane
 - Lane change detection
 - By sensing data in spaced strips (sparse or dense) much richer information can be obtained with sensor data fusion (e.g. object tracking).

- **Passive follower sensors embedded in road**
 Such a system will require a larger frequency spectrum to be operational than the standard RFID bands (e.g. 125 kHz & 13.56 MHz).
Nanosensors for road and environmental sensing

Smoke detection by optically active molecules

Photos of the two humidity sensors fabricated on polycarbonate membranes with adhesive paper shadow masks.
5. Standardization of Electronic Info

<table>
<thead>
<tr>
<th>ACCIDENT</th>
<th>UN</th>
<th>LUOMA</th>
<th>CEDR</th>
<th>WHITE BOOK</th>
<th>TROPIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2005-08-18
Based upon an extension of standard signs standardization (Vienna Convention)
Also of sign verbalism ("EUROPEANISMS")

<table>
<thead>
<tr>
<th>Country</th>
<th>Source</th>
<th>Morphology</th>
<th>Comment en</th>
<th>RDS text(s)</th>
<th>RDS code(s) source</th>
</tr>
</thead>
<tbody>
<tr>
<td>InSafety EU en IIID</td>
<td></td>
<td></td>
<td>ResultsDesP sychVeOct0</td>
<td>5-10/3.3.2.2</td>
<td></td>
</tr>
<tr>
<td>Park and Ride</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InSafety EU en IIID</td>
<td></td>
<td></td>
<td>ResultsDesP sychVeOct0</td>
<td>5-10/3.3.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InSafety EU en IIID</td>
<td></td>
<td></td>
<td>ResultsDesP sychVeOct0</td>
<td>5-10/3.3.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>InSafety EU en IIID</td>
<td></td>
<td></td>
<td>ResultsDesP sychVeOct0</td>
<td>5-10/3.3.2.2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UN en Infoterm</td>
<td></td>
<td></td>
<td>VC1968/E,14c</td>
<td></td>
<td>see also IT 34 Public transport: TRAM</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C English L1 L2</td>
<td></td>
<td></td>
<td>VC1968/E,14b</td>
<td></td>
<td>see also IT 39 Public transport: METRO</td>
</tr>
</tbody>
</table>
6. Modelling

Micro and macro modelling:

VISSIM

MT Model
Steps to be taken...

- Initial model adapted for Traffic Safety impact analysis.
- ADAS equipped vehicles of different types (car, truck, PTW) modelled.
- Run without ADAS.
- Run with “ideal” ADAS behavior.
- Run with real ADAS behavior.
- Run with multiple ADAS.

➢ All for different penetration rates and road types.
7. Training

Operators’ Training MMT:

![Image of Operators’ Training Tool]

Embedded Sensors, Videos, and Flashing Lights

When electromagnetic sensors embedded in the ramp pavement detect a wrong-way vehicle, the system performs three primary functions. First, two signs mounted on both sides of the northbound exit ramp begin flashing an alternating red-yellow "Wrong Way" message for several minutes. At the same time, a closed-circuit video camera and time-lapse VCR record the incident to help traffic engineers determine the cause of the wrong-way incident and develop measures to prevent future wrong-way crashes. Electromagnetic sensors embedded in the pavement (the three dark squares) detect vehicles moving in the wrong direction (above). When the sensors determine a vehicle is travelling the wrong way, the message sign illuminates a red "Wrong Way" message (above).

![Image of Wrong Way Driver Warning System]

Video Detection System and Flashing Lights

This system will use a Trafcon Video Detection system, which consists of a camera installed on a signal pole. When the video detector is activated, a signal is transmitted to the message sign, which...

www.insafety-eu.org

Road Safety Event
Athens, 1st of March 2011

Dr. Evangelos Bekiaris
Finally…

Towards a real self-explanatory and comfortable driving environment….
...and a forgiving one too!!!